# SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD • POST OFFICE DRAWER 28510 • SAN ANTONIO, TEXAS, USA 78228-0510 • (210) 684-5111 • TELEX 244846

December 22, 1993

Mr. Robert W. Stewart Patriot Technologies International 8711 Burnet Road, Suite F-60 Austin, Texas 78758

#### Dear Mr. Stewart:

Wear testing has been completed on your six samples using ASTM method D2783-88, Measurement of Extreme-Pressure Properties of Lubricating Fluids (Four-Ball Method). The test method is used to differentiate between lubricating fluids having low, medium, and high levels of extreme-pressure properties. Three steel balls are clamped together and covered with the lubricant to be evaluated. A fourth steel ball is pressed into the cavity formed by the clamped balls for three point contact. The temperature is brought to 18.33 to 35°C, with a rotating speed of 1760±40 rpm, then a series of tests of 10 second duration are made at increasing loads until welding occurs.

Values are obtained for weld point (the load in kilograms at which the rotating ball welds to the three stationary balls, indicating the extreme pressure level of the lubricants-force has been exceeded) and load wear index (load-carrying property of a lubricant - the average of the sum of corrected loads determined for ten applied loads immediately preceding the weld point) for each sample. These values are shown in the table below, along with sample identification. Additional sheets attached show the individual load results for each material.

| Sample                    | Load Wear Index | Weld Point, Kg |
|---------------------------|-----------------|----------------|
| A. T-Plus Teflon          | 43.7            | 200            |
| B. Supreme Plus           | 59.9            | 250            |
| C. Slick 50               | 42.5            | 200            |
| D. STP Engine treatment   | 58.5            | 315            |
| E. QMI Engine treatment   | 49.0            | 250            |
| F. MT-10 Engine Treatment | 246.4           | >800           |



Repeatability of the test is such that the difference between successive results obtained by the same operator with the same apparatus under constant operation conditions on identical test material would, in the long run, in the normal and correct operation of the test method, exceed the following value only in one case in twenty: repeatability = 17% of the mean value. The Patriot product did not weld at the highest load the instrument was capable of running, so the load wear index for it is an approximation. It has extreme pressure levels much higher than any of the other samples. We appreciate the opportunity to be of service in this matter. If there are questions concerning the data, please contact me at (210)522-2071.

Sincerely,

Karen B. Kohl

Karen B. Kölle

Manager, Special Projects
Petroleum Products Research Dept.

Automotive Products and Emissions Research Division

# **FRICTION WEAR & ABRASION TESTS**

# Firepower FP-10 Lubricant Elite<sup>TM</sup>

Tests performed on the FLC Lubricity Tester

### SPECIFICATIONS F-1599-1A FLC Lubricity Tester

Motor:

1/4 HP DAYTON Motor, 117V, 5.5A, 60 cycle

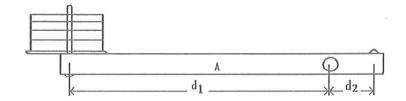
RPM:

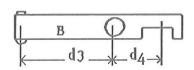
1725 RPS reduced via 2"/4" pulley system to 862.5 RPM

Test Roll:

Falex test roll No. F-15500; Rockwell - C42

Testing Ring:


Timken No. A4138; Rockwell - C56


Belt Drive:

4L270

Loading Weights:

Falex certified one and two-pound stackable loading weights





### Formula:

F (Force on the test roll) = (Fa +  $k_1$ ) [( $d_1/d_2$ ) + ( $d_1/d_2$ ) ( $k_1$ )] [( $d_3/d_4$ )] + [( $d_3/d_4$ ) ( $k_2$ )]

Reduced formula with distances and constants plugged in: F = (Fa + 1.5) (48.3407) + 0.6875

Fa = Implied force (lbs.) on long lever arm "A"

 $k_1 = 1.5$  lbs. (weight of long lever arm "A")

 $k_2 = 0.3$  lbs. (weight of short lever arm "B")

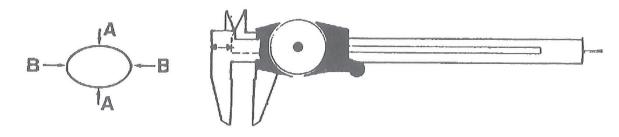
 $d_1 = 11.8125$  in. (distance from weight stack to fulcrum on arm "A")

 $d_2 = 1.4$  in. (distance from fulcrum to center of force point at the top of long lever arm "A")

 $d_3 = 2.75$  in. (distance from lower force point to fulcrum of short lever arm "B")

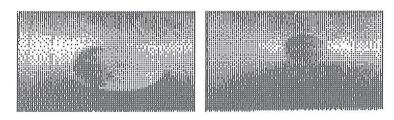
 $d_4 = 1.2$  in. (distance from fulcrum to point of pressure on test roll and test ring to short lever arm "B")

**NOTE:** The force on the test roll due to the weight of the long lever arm itself is 73.1968 lbs. This is the "no-load" reading. This weight is calculated into the force table on the following page.


# **FORCE TABLE**

# For FLC Lubricity Tester (Falex)

### Ratio of Force 48:1


| Implied Force (Lbs.) to Long Lever<br>Arm "A" (Weight Post) | Actual Force on Test Roll & Test Ring (Lbs.) |
|-------------------------------------------------------------|----------------------------------------------|
| 1                                                           | 121.5393                                     |
| 2                                                           | 169.8800                                     |
| 3                                                           | 218.2207                                     |
| 4                                                           | 266.5614                                     |
| 5                                                           | 314.9021                                     |
| 6                                                           | 363.2428                                     |
| 7                                                           | 411.5835                                     |
| 8                                                           | 459.9242                                     |
| 9                                                           | 508.2649                                     |
| 10                                                          | 556.6056                                     |
| 11                                                          | 604.9463                                     |
| 12                                                          | 653.2870                                     |
| 13                                                          | 701.6277                                     |
| 14                                                          | 749.9684                                     |
| 15                                                          | 798.3091                                     |
| 16                                                          | 846.6498                                     |
| 17                                                          | 894.9905                                     |
| 18                                                          | 943.3312                                     |
| 19                                                          | 991.6719                                     |
| 20                                                          | 1040.0126                                    |
| 21                                                          | 1088.3533                                    |
| 22                                                          | 1136.6940                                    |
| 23                                                          | 1185.0347                                    |
| 24                                                          | 1233.3754                                    |
| 25                                                          | 1281.7161                                    |
|                                                             |                                              |

## **WEAR TEST**



# PROCEDURES & RESULTS

Under carefully controlled laboratory test conditions, this basic test was performed with a variety of lubricants for a 60 second time period and under a 266.5 lb. roll to ring pressure. The method of measurement devised to indicate wear consisted of measuring the length and width of a "wear mark" (see drawing below) and multiplying them together and multiplying by 1,000 to get an index number. The tables below allow a comparison of index numbers (higher numbers indicating more wear) of the various lubricants used in this test.



Magnified Examples of Wear Marks

| PRODUCT NAME                          | FORCE<br>(LBS.) | WEAR<br>INDEX NO. | SCAR<br>LENGTH | SCAR<br>WIDTH |
|---------------------------------------|-----------------|-------------------|----------------|---------------|
| Super Lube jel (Bohemia, NY) PTFE     | 266.5           | 102.9             | 0.4200"        | 0.2450"       |
| TRI-FLON (oil w/PTFE)                 | 266.5           | 79.6              | 0.3723"        | 0.2138"       |
| Kleeroil (Am. Writing Ink Co.)        | 266.5           | 77.3              | 0.3738"        | 0.2068"       |
| Koppers/S.A. All Weather Weapons Lube | 266.5           | 73.8              | 0.3730"        | 0.1979"       |
| RIG +P Stainless Steel Lube           | 266.5           | 72.1              | 0.3564"        | 0.2024"       |
| Kleenbore Formula 3 oil               | 266.5           | 71.1              | 0.3649"        | 0.1948"       |
| Rem-oil w/Teflon (PTFE)               | 266.5           | 68.3              | 0.3478"        | 0.1965"       |
| Hoppes lube oil                       | 266.5           | 67.4              | 0.3507"        | 0.1922"       |
| Parker-Hale Express Gun Oil           | 266.5           | 65.0              | 0.3495"        | 0.1859"       |
| G-96 Gun Treatment (aerosol)          | 266.5           | 62.8              | 0.3358"        | 0.1871"       |
| Military Lube oil AXS-72 (obsolete)   | 266.5           | 58.8              | 0.3255"        | 0.1807"       |
| RNI Liquid Gunsmith                   | 266.5           | 56.6              | 0.3189"        | 0.1775"       |
| WD-40                                 | 266.5           | 55.2              | 0.3060"        | 0.1805"       |

| PRODUCT NAME                                  | FORCE<br>(LBS.) | WEAR<br>INDEX NO. | SCAR<br>LENGTH | SCAR<br>WIDTH |  |  |  |
|-----------------------------------------------|-----------------|-------------------|----------------|---------------|--|--|--|
| 3 in 1 "Plus" (aerosol)                       | 266.5           | 54.4              | 0.3230"        | 0.1683"       |  |  |  |
| Rusty Duck                                    | 266.5           | 52.7              | 0.3110"        | 0.1694"       |  |  |  |
| Pro-Shot All Weather Gun Oil                  | 266.5           | 52.7              | 0.3115"        | 0.1692"       |  |  |  |
| Break Free LP (lube/preservative) PTFE        | 266.5           | 49.9              | 0.3037"        | 0.1642"       |  |  |  |
| LSA Springfield Armory                        | 266.5           | 49.3              | 0.3000"        | 0.1643"       |  |  |  |
| Sports Lube Rod & Gun Oil                     | 266.5           | 43.6              | 0.2890"        | 0.1507"       |  |  |  |
| Kleenbore Super Lube (aerosol)                | 266.5           | 48.4              | 0.2930"        | 0.1652"       |  |  |  |
| Hornaday "ONE SHOT" (aerosol)                 | 266.5           | 39.9              | 0.2664"        | 0.1498"       |  |  |  |
| Birchwood-Casey "Sheath"                      | 266.5           | 34.6              | 0.2530"        | 0.1366"       |  |  |  |
| Break Free CLP (PTFE)                         | 266.5           | 30.2              | 0.2495"        | 0.1212"       |  |  |  |
| TUFOIL (PTFE)                                 | 266.5           | 27.9              | 0.2235"        | 0.1249"       |  |  |  |
| Molube-Alloy (moly disulfide) 777-1           | 266.5           | 27.8              | 0.2301"        | 0.1210"       |  |  |  |
| Blue Spectre Gun Oil (moly disulfide)         | 266.5           | 24.8              | 0.2157"        | 0.1148"       |  |  |  |
| Tetra-Gun Oil (fluorocarbon synthetic)        | 266.5           | 6.6               | 0.1045"        | 0.0634"       |  |  |  |
| TRI-FLOW (PTFE)                               | 266.5           | 6.2               | 0.1050"        | 0.0590"       |  |  |  |
| Eezox Synthetic Gun Oil                       | 266.5           | 2.0               | 0.0625"        | 0.0325"       |  |  |  |
| Pro-lix Dry Film Lube                         | 266.5           | 7.0               | 0.1061"        | 0.0670"       |  |  |  |
| Tetra Gun Grease (synthetic)                  | 266.5           | 2.1               | 0.0590"        | 0.0359"       |  |  |  |
| Minuteman High Tech Gun Oil                   | 266.5           | 3.3               | 0.0749"        | 0.0443"       |  |  |  |
| Firepower FP-10 Lubricant Elite <sup>TM</sup> | 266.5           | 0.9               | 0.0390"        | 0.0240"       |  |  |  |
| INCREASED LOADS                               |                 |                   |                |               |  |  |  |
| Eezox Synthetic Gun Oil                       | 363             | 23.7              | 0.2036"        | 0.1164"       |  |  |  |
| Eezox Synthetic Gun Oil                       | 460             | 34.1              | 0.2525"        | 0.1352"       |  |  |  |
| Minuteman High Tech Gun Oil                   | 363             | 3.9               | 0.0790"        | 0.0495"       |  |  |  |
| Minuteman High Tech Gun Oil                   | 460             | 31.4              | 0.2372"        | 0.1323"       |  |  |  |
| Firepower FP-10 Lubricant Elite <sup>TM</sup> | 363             | 1.0               | 0.0321"        | 0.0300"       |  |  |  |
| Firepower FP-10 Lubricant Elite <sup>TM</sup> | 460             | 1.6               | 0.0499"        | 0.0321"       |  |  |  |